Ethan Blog

Raise the bar

Structuring Machine Learning Projects 第二周笔记

ML Strategy(2)

ML Strategy(2) Error analysis Incorrectly labeled DL算法对随机错误有很强的鲁棒性,所以一些随机误差不会影响训练的结果 而系统性的错误对模型影响较大 Build your first system quickly then iterate Set up dev/test set and metric Build init...

Structuring Machine Learning Projects 第一周笔记

ML Strategy(1)

ML Strategy(1) Orthogonalization 正交化是指让多个超参数的调整互相不影响 ML的基本要求: 模型在训练集上拟合情况良好(bigger network) 模型在验证集上拟合情况良好(Regularzation,bigger training set) 模型在测试集上拟合情况良好(bigger dev set) 模型在真实环境下表现良好(...

Hyperparameter tuning, Regularization and Optimization 第三周笔记

Hyperparameter tuning&Batch Normalization&Programming Frameworks

Hyperparameter tuning&Batch Normalization&Programming Frameworks Hyperparameters 在深度神经网络中有很多的超参数,例如\(\alpha,\beta,\beta_1,\beta_2,\epsilon,layers\_l,hidden\_units,learning\_rate\_decay\)等...

Hyperparameter tuning, Regularization and Optimization 第二周笔记

Optimization algorithms

Optimization algorithms Mini-batch 把整个训练集batch分为多个子训练集mini-batch,mini-batch训练速度远高于batch a epoch 代表遍历了一遍整个训练集 if mini-batch size = m : batch gradient descent \((X^{\{1\}},Y^{\{1\}}) = (X,Y)\) #训...

Hyperparameter tuning, Regularization and Optimization 第一周笔记

Practical aspects of Deep Learning

Setting up your Machine Learning Application Bias/Variance trade-off Bias对应训练集误差,Variance对应验证集误差,举例如下   high variance high bias high bias&high variance ...

Neural Networks and Deep Learning 第四周笔记

Deep Neural Networks

Deep Neural Network from logistic regression to neural network 深度神经网络的参数维度 \[W^{[l]},dW^{[l]} : (n^{[l]} , n^{[l-1]})\] \[b^{[l]},db^{[l]}: (n^{[l]} , 1)\] \[Z^{[l]} ,dZ^{[l]},A^{[l]},dA^{[l...

Neural Networks and Deep Learning 第三周笔记

Shallow Neural Networks

Shallow Neural Network 前向传播 \[Z^{[1]} = w^{[1]}X + b^{[1]}\] \[A^{[1]} = g^{[1]}(Z^{[1]})\] \[Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}\] \[A^{[2]} = g^{[2]}(Z^{[2]})\] 反向传播 \[dA^{[2]} = -\frac{Y}{...

Neural Networks and Deep Learning 第二周笔记

Neural Network Basics

Logistic Regression as a Neural Network sigmoid 在logistic regression后加一个非线性函数,例如sigmoid()可以使输出满足概率特性 \[0 \leq P_i \leq 1\] \[\sum{P_i} = 1\] 损失Loss函数$L$ 损失函数常用预测值和标签的交叉熵定义: \[L(\hat{y},y) = -...

Numpy基础

Numpy foundation for deep learning

Numpy 是Python中进行科学计算的库函数,可以处理高性能的多维矩阵运算. Numpy 1.数组 import numpy as np a = np.array([1,2,3]) #定义一维数组 b = np.array([[1,2,3],[4,5,6]]) #定义二维数组 print(a.shape) ...