Deep Neural Network
from logistic regression to neural network
深度神经网络的参数维度
\[W^{[l]},dW^{[l]} : (n^{[l]} , n^{[l-1]})\]
\[b^{[l]},db^{[l]}: (n^{[l]} , 1)\]
\[Z^{[l]} ,dZ^{[l]},A^{[l]},dA^{[l]}: (n^{[l]} , m)\]
DNN的前向传播和反向传播
前向
\[Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}\]
\[A^{[l]} = g^{[l]}(Z^{[l]})\]
反向
\[dZ^{[l]} = dA^{[l]} * g^{[l]’}(Z^{[l]})\]
\pdW^{[l]} = dZ^{[l]}A^{[l-1]T}\]
\[db^{[l]} = \frac{1}{m}np.sum(dZ^{[l]},axis =1,keepdims = True)\]
\[dA^{[l-1]} = W^{[l]T}dZ^{[l]}\]
参数和超参数
参数是指W,b这些神经网络可以自学习调节的
超参数:learning rate,#iteration,#hidden layer L,#hidden units n,choice of activation function在一定程度控制参数,所以称为超参数
-
Previous
Neural Networks and Deep Learning 第三周笔记 -
Next
Hyperparameter tuning, Regularization and Optimization 第一周笔记